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Abstract

We are frequently faced with a large collection of antibodies, and want to select those with

highest affinity for their cognate antigen. When developing a first-line therapeutic for a novel

pathogen, for instance, we might look for such antibodies in patients that have recovered.

There exist effective experimental methods of accomplishing this, such as cell sorting and

baiting; however they are time consuming and expensive. Next generation sequencing of B

cell receptor (BCR) repertoires offers an additional source of sequences that could be

tapped if we had a reliable method of selecting those coding for the best antibodies. In this

paper we introduce a method that uses evolutionary information from the family of related

sequences that share a naive ancestor to predict the affinity of each resulting antibody for its

antigen. When combined with information on the identity of the antigen, this method should

provide a source of effective new antibodies. We also introduce a method for a related task:

given an antibody of interest and its inferred ancestral lineage, which branches in the tree

are likely to harbor key affinity-increasing mutations? We evaluate the performance of these

methods on a wide variety of simulated samples, as well as two real data samples. These

methods are implemented as part of continuing development of the partis BCR inference

package, available at https://github.com/psathyrella/partis.

Comments

Please post comments or questions on this paper as new issues at https://git.io/Jvxkn.

Author summary

Antibodies form part of the adaptive immune response, and are critical to both naturally

acquired immunity and vaccine response. Next generation sequencing of the B cell recep-

tor (BCR) repertoire provides a broad and highly informative view of the DNA sequences

from which antibodies arise. In many cases we would like to identify which of these BCR

sequences correspond to antibodies with the highest affinity for a particular antigen. Exist-

ing experimental methods of selecting antibodies are effective, but time-consuming and

expensive. In this paper we introduce new computational methods that use evolutionary

information from the family of related BCR sequences to predict the affinity of each

resulting antibody for its corresponding foreign antigen. When combined with informa-

tion on the identity of this antigen (which we do not attempt to predict), these methods
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should provide a source of effective new antibodies that can then be experimentally syn-

thesized and tested for function.

This is a PLOS Computational Biology Methods paper.

Introduction

Antibodies are the foundation of both vaccine-induced immunity and many important thera-

peutics. They stem from B cells through the processes of VDJ rearrangement and somatic

hypermutation (SHM), which yield a vast repertoire of B cell receptors (BCRs) within each

person. Each clonal family begins from a single naive B cell that has encountered its cognate

antigen, which then reproduces in a germinal center (GC), diversifying and evolving as SHM

drives affinity maturation. We can probe the BCR repertoire via next generation sequencing

(NGS), and with computational methods divide it into groups of clonally-related sequences [1]

stemming from the same rearrangement event (clonal families).

Of the many sequences in the BCR repertoire, we are generally interested in those that

code for the highest affinity antibodies. There exist several effective experimental methods of

finding high affinity B cells. Both cell sorting and antigen baiting have been used to find a

variety of important antibodies [2–4]. These approaches have several challenges. For

instance, constructing a stable baiting antigen for certain conformational epitopes can be

challenging. However their main limitation is that they require large investments of time and

resources.

Deep sequencing of the BCR repertoire yields tens of thousands to millions of sequences

from this same pool, some of which undoubtedly correspond to high affinity antibodies. And

in many cases, this NGS data already exists, since it is frequently collected as a matter of course

when studying, for instance, antibodies isolated using the cell sorting approach. If we had

some way of identifying a handful of these sequences that are likely to correspond to high

affinity antibodies, then they could be synthesized and tested for their binding properties. This

could yield a rich source of novel antibodies.

In most practical cases we would like to choose only antibodies that are effective against a

particular pathogen or epitope. Because the evolutionary signatures in sequence data can tell

us much more about affinity than they can about specificity, we separate this task into two

parts: finding antibodies or families with the desired specificity, and finding antibodies with

high affinity regardless of specificity. While de novo epitope prediction from sequence data

alone is a rapidly developing field, the challenges are still such that specificity determination is

best accomplished with non-sequence-based information, such as cell sorting or information

about vaccine challenge. Because our expertise is solely in analyzing sequence data, the meth-

ods in this paper thus deal only with affinity prediction. However, to give an idea of what is

possible, we also review techniques that have been used to enrich for particular specificities

(see Discussion).

In our experience, there are two common use cases for methods of choosing antibodies

from NGS data, depending on what prior information is available. If we have a previously-iso-

lated antibody of interest, then specificity has already been determined and we want to choose

only among the sequences in that antibody’s family. In the absence of such an antibody, we are
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instead choosing from among many different families in the repertoire, and our affinity pre-

diction methods must be paired with some method of enriching for families with the desired

specificity. While the second case is more difficult, because both affinity and specificity vary

between families, it also holds the promise of much greater rewards, since novel antibodies

from previously unknown families could bind with much higher affinity, or to new epitopes.

In this paper we first test, on both simulated and real data samples, a variety of methods to

choose individual high-affinity sequences both from within single families, and from among

all families of a given specificity in the repertoire. We find that an observed sequence’s similar-

ity to its family’s amino acid consensus sequence (measured by hamming distance, and abbre-

viated aa-cdist) is a highly effective predictor of affinity in both of these cases. Because the

other, more poorly performing metrics provide independent information not in aa-cdist,

we also combined them using several machine learning approaches. We were not, however,

successful in training such a method that substantially outperformed aa-cdist, which we

believe is likely due to several unique features of the combined tree and sequence spaces.

We next introduce an entirely new metric to predict the change in affinity along each

branch of a family’s inferred phylogenetic tree (abbreviated Δ-affinity). This new metric, called

local branching ratio (nuc-lbr), draws on ideas from [5] and [6]. It is designed for situations

where we have an antibody of interest, and want to know which branches along its inferred

lineage are likely to harbor the most important mutations.

Since we focus on B cells we desire to predict affinity, which in our simulations we define as

the inverse of the dissociation constant in a biochemically-motivated model (see Methods).

However the metrics we test are more directly measuring evolutionary fitness (the expected

number of offspring), and are thus also of much wider applicability. For instance, while writing

this paper we discovered that some of the authors of [5] had concurrently found that aa-
cdist is predictive of fitness in the context of viral evolution, and also derived a mathemati-

cal proof that aa-cdist is in some circumstances the optimal metric [7]. We would also

expect nuc-lbr to predict fitness-increasing mutations in an inferred viral lineage just as

effectively as it predicts affinity increases for antibodies.

These metrics are essentially evolutionary in nature, and thus require at least a handful of

sequences from each clonal family. They require nucleotide sequences only, with no structural

information. All of these metrics can be calculated with simple options in the freely available

partis software package https://github.com/psathyrella/partis, which also performs BCR

annotation, simulation, clonal family clustering, and per-sample germline inference [1, 8, 9].

However, we note that aa-cdist is simple enough that for users who have already grouped

their sequences into clonal families, a simple sequence alignment GUI may suffice.

Results

Affinity and fitness

The metrics that we use to predict affinity and Δ-affinity for each sequence begin by consider-

ing that sequence in the context of its clonal family of related sequences. Whether this context

is a phylogenetic tree or a sequence alignment, it provides information about the evolutionary

history that led to the sequence’s development. The metrics use this information to find the

sequences stemming from cells that were fittest, in the evolutionary sense, during the GC reac-

tion. Because a key purpose of the GC reaction is to apply selective pressure in order to direct

evolution toward antibodies that bind to pathogens with high affinity, fitness is generally cor-

related with affinity. It is important to note, however, that this fitness also depends on other

factors, such as the ability to recruit T cell help. We thus generally refer to “predicting affinity”

in this paper, but it should be understood that the metrics are more directly connected to GC
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reaction fitness, and the extent to which this fitness correlates to affinity must be judged on a

case by case basis, particularly in real data. In simulation, we define specific mathematical con-

nections between each sequence’s affinity and its expected number of offspring. The two real

data samples in this paper, in contrast, measure neutralization concentration rather than affin-

ity, and while these quantities are generally expected to correlate, we cannot say to what extent

in any specific instance.

Metrics

We measured the ability of a variety of metrics to predict affinity and Δ-affinity, all of which

are summarized in Table 1. Each is also described in the following paragraphs.

As mentioned above, each observed sequence’s hamming distance to its family’s amino

acid consensus (abbreviated aa-cdist) is the best predictor of affinity (where smaller dis-

tance is better). While this metric has been used in an ad hoc way [10], to our knowledge the

only attempt to measure its performance was [11], which tested on only a single, small family

in the supplemental information. In many cases the calculated consensus sequence itself is not

observed, and it is possible that in such cases this unobserved consensus would be a better pre-

dictor than the nearest observed sequence, but we have not evaluated this (see Discussion).

When calculating the consensus, ties are treated as ambiguous positions, which are then

ignored in the hamming distance.

Nucleotide local branching index (abbreviated nuc-lbi) uses the family’s phylogenetic

tree to measure the “branchiness” in the local area around each node [5]. This branchiness is

calculated by integrating the total branch length surrounding the node with a decaying expo-

nential weighting factor (S1 Fig). While nuc-lbi performs worse than aa-cdist in almost

all regions of parameter space, it is nevertheless important because it contains some indepen-

dent information, provides an obvious path to improving aa-cdist, and serves as the basis

for nuc-lbr. Our implementation of nuc-lbi includes several modifications to the origi-

nal formulation. We perform an independent optimization of the τ locality parameter,

although we arrive at a comparable final value. We also introduce a normalization scheme,

which although amounting only to a switch to human-interpretable units, is important

because without it nuc-lbi calculated in different papers with different τ values cannot be

compared.

We also introduce a new version of local branching index that incorporates only nonsynon-

ymous mutations (abbreviated aa-lbi), which significantly outperforms the original nucleo-

tide version in all regions of parameter space. It in fact outperforms aa-cdist in some

Table 1. Metrics used in this paper to predict affinity (top) and Δ-affinity (bottom). Those marked with a � perform much better than the others, and are recommended

for all practical use. The sign of the metric’s correlation with the predicted quantity is indicated by “± corr.”.

affinity metrics shorthand ± corr. description

AA consensus distance � aa-cdist - hamming distance to the clonal family’s amino acid consensus sequence

nuc. local branching index nuc-lbi + total branch length in the local area of the nucleotide tree [5]

AA local branching index aa-lbi + nuc-lbi calculated on a tree reflecting only nonsynonymous mutations

somatic hypermutations n-shm + number of nucleotide somatic hypermutations

nucleotide consensus distance nuc-cdist - nucleotide version of aa-cdist

Δ-affinity metrics shorthand ± corr. description

nuc. local branching ratio � nuc-lbr + ratio of total branch length in the (nucleotide) tree below the node to above the node

change in nuc-lbi Δ-nuc-lbi + change in local branching index compared to the parent node

AA local branching ratio aa-lbr + nuc-lbr calculated on a tree reflecting only nonsynonymous mutations

https://doi.org/10.1371/journal.pcbi.1008391.t001
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regions; however (like nuc-lbi) its poor performance with low selection strength and when

choosing among all families recommend against its use as a standalone metric.

Because affinity maturation via somatic hypermutation should be, in the long run, an affin-

ity-increasing process, many papers have used the number of somatic mutations as a proxy for

affinity (abbreviated n-shm, and distinguished from our abbreviation SHM for the process).

Unfortunately in practice this metric performs very poorly because it chooses leaves, which

harbor many novel mutations. Novel mutations are in general overwhelmingly deleterious,

and in leaves have not yet been evaluated by significant selective pressure. The underlying idea

that affinity increases with distance from root is valid; however it is necessary to go some way

back toward root from the leaves (indeed this is what aa-cdist accomplishes).

In addition to aa-cdist, we also show results for its nucleotide analog nuc-cdist.

This is useful mainly as a way to understand the importance of information from the amino

acid translation table, and thus differences between aa-cdist and nuc-lbi.

An additional metric that we do not evaluate is the multiplicity of each unique sequence. It

can be experimentally challenging to disentangle underlying cell numbers from other factors

such as primer bias and varying expression levels [12–14]. Thus while higher multiplicity is

sometimes used as a standalone metric to predict higher fitness [10], we do not evaluate it here

because many data sets that we encounter do not include the measures necessary for an accu-

rate estimation. For samples that are known to have reliable multiplicity information, however,

this can be passed to partis (see https://git.io/JJCGe), and our implementations of nuc-
lbi, aa-lbi, and aa-cdist include extensions such that it will be properly accounted for

in the calculations (see Methods).

To predict affinity-increasing mutations (Δ-affinity) we mainly focus on the local branching

ratio nuc-lbr. This novel metric uses the same branch length integrals as nuc-lbi, but

instead of summing in all directions, it compares the branchiness among the node’s offspring

to that of its parents and siblings (S1 Fig). This ratio of branchiness below vs above the node

thus quantifies the possibility that an affinity-increasing mutation occurred along the branch

immediately above the node, since such a mutation would increase fitness among the node’s

offspring.

In order to provide some baseline for the effectiveness of nuc-lbr, we also evaluate the

change in nuc-lbi from the parent node (abbreviated Δ-nuc-lbi) as a predictor of Δ-

affinity. While this functions adequately, it is always significantly worse than nuc-lbr.

As for nuc-lbi, we also introduce an amino acid version of nuc-lbr (abbreviated aa-
lbr); however it does not perform better than the standard version.

Evaluation framework

The first step toward confidence in any method is measuring its performance in all corners of

its parameter space. For the metrics in this paper, that space is constructed from sequences

and trees and is vast, complicated, and high-dimensional. In order to measure performance,

we began with a previously-described simulation framework [15], extending it to allow a more

comprehensive variation of parameters, and rewriting to optimize for speed. We then per-

formed scans across all reasonably plausible values of parameters that could affect

performance.

The simulation begins by constructing a naive sequence via VDJ rearrangement. It then

chooses a number of “target” sequences at some distance from the naive, each of which repre-

sents a potential optimal antibody. Repeated rounds of SHM then apply selective pressure to

direct the naive sequence’s offspring toward these targets.
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We measure performance using a metric called “top quartile accuracy gap” that we believe

emphasizes the practical use case for these metrics: choosing a handful of sequences from deep

sequencing data in order to invest substantial resources into synthesis and binding evaluation.

While these metrics predict affinity, and are thus correlated with it, quantifying overall correla-

tion with something like the Pearson coefficient would not measure effectiveness for our use

case. This is because we only care about the very small fraction of sequences at the highest

affinity values, whereas measures of overall correlation count all sequences equally and are

thus dominated by low- and medium-affinity sequences. Furthermore, correlation implicitly

values sensitivity and specificity equally, whereas for us specificity is much more important:

wasting real-world experimental resources on a bad antibody is usually worse than missing a

few of the best binders.

To measure performance we instead imagine that we have chosen the top few sequences

according to the predictive metric, and then ask whether they are also among the top few in

affinity. We quantify this by taking the average of their affinity quantiles. We then compare

this mean quantile to that of a hypothetical perfect method that simply ranks sequences by

their true affinity. The amount by which the mean affinity quantile of sequences chosen by the

actual metric deviates from that of the perfect metric, further averaged over quantiles from 75

to 100 (i.e. choosing between 25% and 0% of sequences), forms the basis of our performance

evaluation. Since this is, roughly speaking, the gap between the affinity of the top quartile of

sequences chosen by the metric vs by a hypothetical perfect metric, we refer to it as the “top

quartile accuracy gap” or “accuracy gap”. When predicting Δ-affinity rather than absolute

affinity, we use a similar procedure, except that “quantiles” is replaced by “N ancestors”, the

number of branches in the tree that separate the true and inferred affinity-increasing muta-

tions (see Methods).

We supplement these comprehensive simulation scans with validation results on two small

real data samples.

Simulation results

We first show simulation performance for a single parameter scan for both affinity and Δ-

affinity prediction (Figs 1 and 2). This scan varies observation time (in units of N generations)

from 50 to 3000 while holding other variables constant. This corresponds roughly to varying

the mean frequency of somatic nucleotide mutations among observed sequences from 2% to

25%.

We then show analogous scans for a variety of other parameters when choosing within fam-

ilies (S2 Fig; the corresponding among-families plots may be found at https://zenodo.org/

record/3929565). These scans correspond to varying the most important simulation parame-

ters: longitudinal sampling, carrying capacity, number of sampled sequences, sequence-to-

affinity mapping, and selection strength. Generalizing across these scans, we find that aa-
cdist performs consistently better than most other metrics, typically at 5-10% from perfect.

aa-cdist’s performance is largely recapitulated, and sometimes slightly exceeded, by aa-
lbi. aa-lbi frequently has a slight advantage when choosing within a family and at very

early observation times, while aa-cdist is often better choosing among families and at long

times. However their behavior diverges as we vary selection strength (S2 Fig bottom right),

with aa-lbi doing slightly better for high selection strength, but dramatically worse near

neutral evolution. Also of note, nuc-cdist performs similarly to, but worse than, nuc-lbi
in many of the scans. This is consistent with the hypothesis that under high selection strength

the local branching calculation does a better job of quantifying branchiness/evolutionary den-

sity than does consensus distance, but that this advantage is overwhelmed by the large benefit
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to including amino acid information in aa-cdist. Under low selection strength, on the

other hand, there is little for the local branching calculation to measure. Meanwhile n-shm
performs much worse than the other metrics in almost all situations. We also show perfor-

mance for a variety of different models of cell export from the GC (S3 Fig), as well as the effect

of varying the number of “target sequences” (the simulation’s representation of hypothetical

ideal antibodies, S4 Fig).

Fig 1. Simulation performance for affinity prediction vs. observation time when choosing sequences within each

family (left) and among all families of a given specificity in the repertoire (right) for the metrics in Table 1. The y-

axis is a percentage describing how much each metric deviates from the best possible performance when choosing the

top few sequences (see Evaluation framework section in text). For example an “accuracy gap” value of 5% for aa-
cdist would mean that if you decided to choose, say, the top 7% of sequences using aa-cdist that the resulting

sequences would on average be in the top 12% of affinity. An observation time of 50 (3000) generations corresponds to

a nucleotide SHM frequency of roughly 2% (25%). The longer simulation times should be thought of as a series of GC

reaction/reentry cycles, as would for instance be seen during anti-HIV bNAb development over several years. Each

point shows the mean ± standard error of 30 samples, where each sample consists of 1500 sequences from 10 families.

Similar plots across ranges of other simulation parameters can be found in S2, S3, S4 and S5 Figs, and at https://

zenodo.org/record/3929565.

https://doi.org/10.1371/journal.pcbi.1008391.g001

Fig 2. Simulation performance for Δ-affinity prediction vs. observation time for the metrics in Table 1. The y-axis

describes how close each metric comes to achieving the best possible performance. Here we are predicting the location

of affinity-increasing mutations in a lineage of inferred ancestral sequences, and for example an “accuracy gap” value

of 0.5 for nuc-lbr would mean that if we choose the best inferred ancestral sequence using nuc-lbr that we would,

on average, be 0.5 branches away from a branch containing an actual affinity-increasing mutation. See Fig 1 caption

for details. Similar plots across ranges of other simulation parameters can be found at https://zenodo.org/record/

3929565.

https://doi.org/10.1371/journal.pcbi.1008391.g002
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In order to provide a more stringent test of performance when choosing among all families,

we also show results on samples where (unlike those described above) parameters vary

between the families in each sample (S5 Fig). We first observe that, as in Fig 1, all methods per-

form better when choosing within families (left column) than among them (right column). To

evaluate the effects of adding between-family parameter variance on choosing among families

(right column), we focus on whether the vertical spread of values left of the dashed line encom-

passes the values to its right. In other words, the points left of the dashed line tell us the effect

of changing the mean values of the parameters (but with no between-families variance), while

those right of it tell us the effect of adding variance between families. The biggest effect of add-

ing this variance is that n-shm performs much worse when observation time (i.e. % SHM)

varies between families (right plot in third row), however it also appears that aa-cdist
degrades by about 5% when selection strength varies between families (right plot in second

row). These surprisingly moderate effects are likely because families vary widely in their final

characteristics even when they start with the same parameter values, since almost all important

characteristics are determined by the very small (typically 3–5), and thus highly stochastic,

number of beneficial mutations that occurs in each family.

In the Δ-affinity prediction (Fig 2) nuc-lbr performs much better than Δ-nuc-lbi, on

average identifying a branch that is 0.1–0.2 steps in the tree from the branch that actually has

an affinity-increasing mutation. This can be thought of as choosing the correct branch eight or

nine out of ten times, and being one branch away the other one or two times. aa-lbr, on the

other hand, performs similarly to nuc-lbr, i.e. in contrast to (absolute) affinity prediction,

the addition of amino acid information does not improve performance. The Δ-affinity perfor-

mance plots for the remaining parameter scans are at https://zenodo.org/record/3929565; they

show nuc-lbr typically between 0.1 and 0.5 steps from perfect, and consistently much better

than Δ-nuc-lbi (but similar to aa-lbr).

Many other variations of these parameter scans, and plots comparing multiple slices for

each metric, can be found at https://zenodo.org/record/3929565.

Data results

Validation on real sequence data serves a different, complementary purpose to validation on

simulation. Real data validation is more stringent, and thus more useful, in the sense that by

definition it perfectly recapitulates the properties of real data. But on the other hand real data

is less stringent, and thus less useful, because it is more difficult to produce and thus is only

ever available for a very restricted set of parameter values. For instance looking at one real data

sample might only explore large, high-mutation trees with strong selection, but ignore perfor-

mance at other parameter values. This means that designing any method using real data valida-

tion alone is extremely risky, since it only provides information about how the method

performs for the particular combination of parameters in those data sets. In the present case,

because affinity is so expensive to measure, real data has a further problem: while there are

many papers with both NGS data and affinity information (e.g. [16–31]), to our knowledge

very few of them both measure affinity for more than a handful of sequences per clonal family

and have made that data public. This is, nevertheless, certainly better than nothing, and can

provide confidence that nothing has gone egregiously wrong in the simulation studies.

Here we have chosen data from two well-known papers on anti-HIV antibodies [32, 33].

There are several aspects of HIV that, a priori, we expected would make it a very challenging

environment for these metrics. First, these papers both measure IC50 neutralization concentra-

tions rather than affinity. To handle this we simply use 1/IC50 in place of affinity, and hope

that neutralization and affinity are correlated enough for the metrics to work. Second, HIV’s
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vast diversity both globally and within each subject means that the viruses that applied selective

pressure during each antibody’s development were in all likelihood quite different from the

viruses against which the antibodies’ neutralization strengths were tested. These papers also

report the geometric mean IC50 over many viruses from the three main global HIV clades, and

for the sake of simplicity we use these overall values for validation. As for almost all current

work, these papers also use unpaired sequencing, which not only ignores any signal from light

chain evolution, but also typically means measuring IC50 values for chimeric antibodies with

non-native light chain sequences. Finally, we note that these are the only real data samples on

which we have run our methods—it would of course have been uninformative to run on many

different samples before deciding which to include in this paper.

With the final reminder that these are extremely small sample sizes, we find that on real

data both aa-cdist (Fig 3) and nuc-lbi (S6 Fig) perform roughly in line with expecta-

tions from simulation. We find that aa-cdist is generally between 0 and 20 quantiles from

perfect, while nuc-lbi ranges from 10 to 30.

Discussion

We have demonstrated effective, practical methods for two tasks common to the analysis of B

cell receptor deep sequencing data. First, we find that a sequence’s similarity to its clonal fami-

ly’s amino acid consensus (aa-cdist) is an excellent predictor of that sequence’s affinity,

and is a highly effective way to choose a handful of sequences for synthesis and testing. Second,

we find that a new metric that we construct called local branching ratio (nuc-lbr) is simi-

larly effective for the related task of predicting which branches in a single lineage are likely to

Fig 3. Performance on real data for aa-cdist from [32] (top) and [33] (bottom). The scatter plots (left) show the

raw correlation between aa-cdist and measured “affinity” (here actually 1/IC50), while the quantile plots (right)

show the relative affinity ranking for sequences chosen using aa-cdist (blue) compared to perfect (green) and

random chance (red). For instance, an x value of 85 on the top right plot corresponds to 75 on the y axis, meaning that

if we chose the top 15% of sequences using aa-cdist that these sequences would on average rank in the top 25% by

affinity (thin red vertical lines). Another way of viewing this is that, at x of 85, the blue line is about 20% below the

green line, meaning performance is 20% worse than perfect; this interpretation corresponds to the “accuracy gap”

values in Fig 1. We also show the equivalent plots for nuc-lbi (S6 Fig).

https://doi.org/10.1371/journal.pcbi.1008391.g003
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harbor affinity-increasing mutations (i.e. predicting Δ-affinity). These metrics are both imple-

mented in the existing partis annotation and clonal family inference package, available at

https://github.com/psathyrella/partis. By testing performance on simulation generated with a

wide variety of parameters, we showed that choosing the best few sequences according to these

metrics will likely result in antibodies that are also among the highest affinity. We further find

that the number of somatic hypermutations (n-shm), while a frequently-used heuristic affin-

ity predictor [10], performs very poorly. We also showed performance on two very small real

data samples, which provide a confidence-boosting cross check. We emphasize that in these

methods we make no attempt at specificity prediction, since this is better achieved through

non-sequence-based methods such as clinical information (e.g. use of vaccine challenge). Thus

in cases where no previously-isolated antibody is available to restrict consideration to a single

family, while aa-cdist is effective at choosing the highest affinity antibodies from among

many families, it is necessary to pair it with a non-sequence-based method of enriching for

families with the desired specificity. Many examples of such methods are described below (see

Previous work).

There are many avenues for future improvement to these methods. We currently use the

plain consensus, which by considering each site independently ignores information about how

sequences evolved together at different sites. By taking a single family-wide consensus, it also

does a relatively poor job of handling families with several widely-separated branches. While

its performance does not drop significantly in such cases (this is tested by the variety of target

sequence configurations in S4 Fig), there is likely room for improvement. When presented

with widely-separated branches, the consensus calculation will in many cases simply ignore all

but the largest branch. This is not ideal, since when evolving toward separate targets, the less-

numerous branches might hold a significant number of effective antibodies. We could address

this by adding locality to the consensus calculation, perhaps by dividing the tree into subli-

neages and then calculating the consensus for each sublineage [34].

We instead introduced aa-lbi as an initial effort to combine aa-cdist and nuc-lbi,

since it provided a simpler path to implementation. The addition of amino acid information

indeed dramatically improves performance: aa-lbi does much better than nuc-lbi almost

everywhere, in fact largely recapitulating the performance of aa-cdist. It does not, however,

perform well in near-neutral evolutionary scenarios, which are likely a common feature of real

data [35]. Thus although aa-lbi is promising, we do not recommend it for general use at

this time.

Another disadvantage of aa-lbi is that the necessary phylogenetic tree and ancestral

sequence inference add additional uncertainty and computation time. The results presented

here benchmark aa-lbi on the true tree and ancestral sequences, rather than the noisy

reconstruction one would obtain given real data. Although (nucleotide) nuc-lbi performs

to expectation on small real data samples (S6 Fig), and we show that nuc-lbi appears largely

insensitive to poor phylogenetic inference (S8 Fig), we have not quantified the effect of this

inference uncertainty on performance, and in some cases it could be significant. For aa-
cdist, on the other hand, while the consensus of a small number of sampled sequences is not

a perfect predictor of the full-family consensus (S7 Fig), there is no inference uncertainty

inherent to the (very simple) consensus calculation.

Towards a different future direction, we acknowledge that the assumption that all sites are

equivalent is particularly inaccurate for BCR sequences: not only are the complementarity

determining regions (CDRs) more important for binding than framework regions (FWKs),

but activation-induced deaminase (AID) activity results in strongly context-dependent muta-

tion patterns. This information could be incorporated into aa-cdist when calculating the

hamming distance by assigning different weights to different regions, perhaps using [36] or
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[37]. For instance, hypothetically, perhaps a one amino acid difference in the CDR should

count for twice (or half) as much as a difference in FWK. Similarly, perhaps mutations at

highly mutable positions should count less toward the distance than those at less mutable posi-

tions. This approach could be further improved by incorporating structural and functional

information, for instance using deep mutational scanning data such as [38] to develop models

of binding change upon mutation.

Another limitation of these metrics is that they do not incorporate information from inser-

tion or deletion mutations (SHM indels). Because SHM indels can have a large impact on

function in the (relatively rare) cases where they occur, this is a significant limitation. Since

indels are not generally treated as informative characters by tree inference programs, this lim-

its the potential utility of adding SHM indel information to the tree-based metrics in the near

future. It would probably be possible, however, to design a new consensus calculation that

incorporates indels into aa-cdist; however we have not experimented with this approach.

While aa-cdist performs well on its own, there is clearly significant independent infor-

mation in the remaining metrics. We thus invested a large effort in developing a machine

learning approach incorporating many different tree and sequence variables (Table 3). We

found the best performance with a decision tree regression (abbreviated dtr), but were unable

to significantly and consistently improve on the performance of aa-cdist alone. We believe

this failure stems from two factors. First, it is possible that there isn’t that much additional

information in the other variables: aa-cdist is in many regions already quite close to per-

fect. Second, because the relative performance of different metrics varies dramatically between

different parts of parameter space, the dtr has to make a very accurate determination of its

location in this space before deciding how to use the input variables. In making this determina-

tion, however, it is limited to inferred variables, which provide only a tenuous link to true

parameter space. To take one example, the relative usefulness of nuc-lbi and n-shm
completely reverses between low and high selection strength (blue and orange in bottom right

of S2 Fig). While the dtr input variable Fay/Wu H does predict selection strength [35], it is

far too noisy to give the dtr an accurate idea where along the x axis it is for a given family

(results not shown). We thus find that the dtr generally recapitulates the performance of the

best single metric at each point in parameter space, but is rarely much better, and sometimes a

bit worse. Since the best single metric is usually aa-cdist, and aa-cdist is both vastly

simpler to calculate and interpret and is not subject to even the possibility of overtraining, this

means that aa-cdist is a better choice overall.

Finally, while it is clear that the observed sequence that falls closest to the family consensus

is likely of high affinity, we have not tested whether the actual consensus sequence (when it is

not observed) would be even better. The selection of such an unobserved consensus sequence

for synthesis would be risky, since unlike observed sequences, there would be little direct evi-

dence showing that it produces a stable, functional antibody. However, it is possible that this

would be a good strategy in cases where the overriding goal is finding the antibody with the

highest possible affinity, and where synthesizing one extra sequence is not a large burden.

Shifting now to predicting affinity-increasing mutations, aa-lbr’s performance is largely

identical to that of nuc-lbr, showing that in contrast to predicting absolute affinity, the

incorporation of amino acid information does not improve performance. We speculate that

this could be because the high resolution inherent to the numerator/denominator distinction

that allows use of a very large τ (see Methods) means that nuc-lbr already sees far enough

up and down the tree to average out synonymous mutations. Another avenue for improve-

ment could be drawing more explicitly on the analogy to absolute affinity prediction, such as

using the change (from parent node) in hamming distance to a local amino acid consensus

sequence.
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An additional concern with nuc-lbr is that because it is sensitive to the detailed long

range ancestral lineage structure, it requires more accurate phylogenetic inference than nuc-
lbi (S8 Fig). While nuc-lbi performs well even with the very heuristic (but also very fast)

trees that partis makes by default, nuc-lbr would benefit from the more sophisticated

inference provided by external packages such as linearham [39] or RAxML [40]. Because they

also provide ancestral sequence inference, these programs will in any case usually be required

for nuc-lbr, since unless internal branches are short enough to contain only a few muta-

tions, a prediction of which branches contain important mutations is not very meaningful.

Previous work

Because the metrics we have presented do not provide information on specificity, we first

review prior work on ways to enrich for antibodies that are specific to a particular pathogen or

epitope. These use information from sources beyond the NGS data, and will provide a key

component of most practical workflows involving our methods. As described above, cell sort-

ing and baiting provide a very direct way to identify antigen-specific antibodies, and thus

when combined with partis seed sequence clustering, also antigen-specific families in the

NGS data (see [41] for an example of this workflow). Yeast display can be used for high-

throughput specificity and affinity screening of natively paired heavy and light chains [42]. A

very recent paper uses a microfluidics-based approach to experimentally evaluate antibody

specificity in high throughput [43] (of particular relevance to our results, they find no correla-

tion between n-shm and measured affinity). Another recent paper clusters sequences into

specificity groups using amino acid hamming distance on a subset of CDR residues deemed

likely to contribute to binding [44]. These paratope residues are chosen using a deep learning

approach trained on a large database of existing structural data [45]. This is a particularly excit-

ing complement to our affinity prediction methods, since given an antibody of interest it

would allow consideration not just of that antibody’s family, but also of unrelated families with

similar paratopes (and thus specificities).

A less-direct way to enrich for a particular specificity is to apply a large immune stimulus,

such as vaccination, and then limit the analysis to plasma cells from families that expand

around 7 days after vaccination [46–52]. In model organisms, it is also possible to cut out tis-

sues where antigen-specific B cells are likely to concentrate (such as lymph nodes or Peyer’s

patches). With longitudinal sampling, a family’s persistence over time can be a strong indicator

of specificity in the presence of either chronic infection [53] or the application of multiple vac-

cinations [49]. With several subjects that have been exposed to the same antigen, we can select

shared lineages either using simple sequence similarity [46–48, 54] or a Bayesian mixture

model incorporating also clonal abundance [55]. With an outside source of antigen-specific

sequences (e.g. from cell sorting or public databases), we can choose sequences that are similar

[50].

Specificity prediction without any of these extra information sources, i.e. from sequence

data alone, is much more difficult. It would involve de novo structure and binding prediction,

which are not currently practical, although much recent work focuses on these problems [56–

60].

Many papers have focused on finding families that have been subject to strong selection,

which when applied to the BCR repertoire is then assumed to correlate to families with higher

affinity. Probably the most common approach to picking highly selected families has been to

measure the ratio of nonsynonymous to synonymous mutations. Observed nucleotide muta-

tions are separated into synonymous (S) and nonsynonymous (NS), the ratio NS/S is calcu-

lated, and values much larger (smaller) than one indicate positive (negative) selection. A
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number of corrections [61–64] and optimizations [65] have also been developed to reduce its

dependence on the baseline mutation model.

In perhaps the earliest B cell specific effort to pick families [66], the authors calculate a fairly

comprehensive variety of simple tree shape metrics on a handful of small trees (e.g. number of

nodes, root-tip distance, outgoing degree, trunk length). While some correlations were noted,

it was largely a descriptive exercise without strong quantitative conclusions. Work several

years later [67] found correlations between some of the same metrics and GC reaction parame-

ters in a mathematical model. However, a later paper [63] noted that neither [66] nor [67]

tested under realistic conditions: both assumed 100% sampling depth, i.e. included every cell

from the GC reaction history in the final tree. After accounting for realistic sampling, this later

paper found that the simple tree metrics lost their predictive power. They then devised a new

metric combining a small amount of tree information with NS/S by ignoring terminal muta-

tions (which as described above are much less likely to lead to high affinity antibodies). This is

analogous to a combination of nuc-lbi, which uses tree structure to measure selection, with

aa-cdist, which reduces the influence of tip mutations. A more recent paper [35] found

that NS/S is higher in CDR than FWK regions, and calculated the likelihood-based fitness

from [5] for several trees, but found no significant relationships between changes in this fitness

and NS/S or CDR vs FWK.

A more complex statistic known as Fay/Wu H [68] has also been used in the context of

BCR repertoires. It quantifies any excess at high values of the site frequency spectrum, and can

be thought of as measuring the amount of shared mutation in the family, or equivalently the

prevalence of selective sweeps. It was used in [35] to determine that families that expand rap-

idly in response to vaccination are generally positively selected. We independently verified that

it indeed identifies highly-selected families (results not shown), and thus included it in the

dtr.

A metric called the log offspring number ratio, which provided a starting point for nuc-
lbr, was introduced in [6]. This metric looks in the tree for pairs of sibling branches where

one branch has a mutation and the other does not. It is then calculated as the log of the ratio

between the number of offspring in the mutated vs non-mutated branches. The distribution of

this value is then calculated separately for NS and S mutations, and a rightward (leftward) shift

in the NS distribution indicates positive (negative) selection. It unfortunately is rendered less

useful by several issues. First, it counts offspring all the way down the tree, so that ancestors get

credit for fitness improvements in all of their offspring, so it cannot be used to find the location

of important mutations. It also ignores sibling pairs in which either both edges have mutations,

or either branch has multiple mutations, which together can amount to throwing out a large

fraction of the tree. Finally, it can only detect in-progress (i.e. not-yet-fixed) incremental selec-

tion, and the NS and S mutation rates must be of the same order of magnitude.

The remainder of previous work has focused on choosing single sequences from within a

family, and separates into experimental and theoretical studies. Experimental papers typically

first choose a family based on the methods above for specificity to the pathogen of interest,

then exclude sequences with “bad” features (e.g. highly hydrophobic, or with free cysteines or

atypical indels), and then rank the remaining sequences by measures such as n-shm, V gene

usage, and CDR3 length. On the theoretical side, nuc-lbi has undoubtedly enjoyed the

most practical use. Introduced in [5], it was originally a quick heuristic replacement for a more

complex likelihood-based metric. Its ability to predict fitness in real influenza data has been

shown in [69], and it features prominently on the nextstrain [70] web site https://nextstrain.

org/flu/seasonal/h3n2/ha/2y?c=lbi.

In the only work we’re aware of that evaluated aa-cdist, the authors adapted an

approach from structural studies called maximum entropy [11]. This models the multiple
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sequence alignment of a family as a multivariate gaussian, and then takes probability (i.e. near-

ness to a gaussian’s peak) as a correlate of affinity. This maximum entropy metric performs

well in their tests, however its generality is unknown, since it was trained and tested using only

one relatively small real data sample. Although they avoid statistical overtraining by training

and testing on disjoint parts of the sample, a single sample can only tell us about performance

at the one point in parameter space at which it resides. Furthermore, since training consists of

optimizing to that particular sample, other regions of parameter space are by construction

very likely to have worse performance. Finally, the resulting software does not seem to be pub-

licly available, although the underlying gaussian modeling framework is available at https://

github.com/carlobaldassi/GaussDCA.jl. Nevertheless, as a cross check in the supplemental

information when predicting binding vs non-binding antibodies, they use area under curve

(AUC) to compare their method (0.97) to aa-cdist (0.86). This indicates the surprising use-

fulness of aa-cdist, especially since aa-cdist is certainly not subject to the same poten-

tial for overtraining.

Methods

Simulation framework

The simulation of each clonal family in this paper begins with a naive sequence generated by

the partis simulation command [8]. Since in this paper we focus on affinity maturation

rather than VDJ rearrangement, we refer to that paper for all details on its implementation

and validation. This naive sequence is then passed to the bcr-phylo package [15] for GC

reaction simulation. For this paper we have extended the original software by adding a number

of new parameters to allow for more comprehensive variation, as well as optimizing for speed.

The full simulation of a family combining partis and bcr-phylo can be run with the fol-

lowing script: https://git.io/JvFcW.

The bcr-phylo simulation begins by generating a number of “target” nucleotide

sequences from the naive nucleotide sequence. These targets represent hypothetical optimal

antibodies toward which evolution will be directed, and are chosen at fixed distance from the

naive sequence (default 15 amino acid hamming distance). The representation of the GC reac-

tion proceeds generation by generation, beginning with the naive sequence’s single cell. In

each generation, a number of offspring is chosen for each cell from a Poisson distribution with

parameter λ determined by that cell’s affinity; if a cell has zero offspring in a generation its line-

age ends. The correspondence between nucleotide sequence and affinity is by default deter-

mined by amino acid hamming distance to target sequence. For a detailed description refer to

the supplement of [15], but the gist is that at each generation a limiting amount of antigen is

apportioned among the cells based on their affinity (inverse dissociation constant) using equa-

tions of chemical binding equilibrium, and each cell’s λ is calculated based on its acquired anti-

gen and the carrying capacity. The net result is a monotonic increase in mean number of

offspring as a cell’s sequence draws closer to a target sequence. We also tested a model with a

much less discrete distribution of possible affinity values, where the distance for each amino

acid pair is rescaled by their BLOSUM similarity (S2 Fig, bottom left). In order to introduce a

selection strength parameter (bottom right of S2 Fig), instead of determining the Poisson

parameter directly from affinity, we smear it out (rescale it) by drawing from a normal distri-

bution. The normal distribution’s mean and variance are calculated such that for a selection

strength of 0, affinity has no effect on offspring number, while for selection strength 1 the Pois-

son parameter is determined directly by affinity (but since the number of offspring is still

drawn from that Poisson, there is still significant stochasticity). Specifically, the parameters for

the ith cell’s normal distribution are given by mi ¼
�l þ sðli �

�lÞ and σi = (1 − s)σλ, where s is
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the selection strength, λi is the ith cell’s unrescaled (affinity-determined) Poisson parameter,

and �l is the mean and σλ the standard deviation of unrescaled Poisson parameters of all cells.

Note that σi is somewhat arbitrary, but this choice ensures that the variance in rescaled λ over

cells is comparable for all values of s. The simulation is terminated after some number of gen-

erations, referred to as the observation time.

When each child cell is generated, its nucleotide sequence has some probability to suffer a

point mutation. This probability is set based on experimental values, but averages roughly one

point mutation per generation. Synonymous mutations have no effect on affinity, while a non-

synonymous mutation that decreases the distance (whether plain or BLOSUM-scaled ham-

ming) to a target sequence increases affinity, and thus mean number of offspring (Poisson

parameter). While context-dependent mutation is implemented in bcr-phylo (using the

S5F model [71]), because this feature increases run times by too much to allow the generation

of the large samples needed for our validation, all samples shown here have this option turned

off. In the limited sample sizes that we have run with context dependence turned on (results

not shown), neither aa-cdist nor nuc-lbi consistently performed either better or worse.

The main pattern was that n-shm performed significantly worse with context dependence

turned on.

Given the complete simulated tree of cells, we have to decide which we will sample. In

order to simplify the many ways of choosing N cells from M generations, we focus on two

cases that cover two alternative models for GC cell export: either sampling a fraction of the

desired number of cells every few generations (top row of S2 Fig), or sampling all cells at the

end (all others). In addition, in order to mimic typical phylogenetic programs that infer ances-

tral sequences, we then also recursively sample all MRCA sequences starting with the set of

sampled cells (although we have also run extensive validation without this option, results not

shown, and the only significant effect is due to the change in the fraction of leaf sequences).

Different models of GC export also stipulate different levels of bias toward exporting higher

affinity cells. We attempt to cover the various possibilities with three options (S3 Fig): uniform

random (default), sampling with probability proportional to affinity, and sampling the cells in

order of perfectly decreasing affinity.

Unless otherwise noted, in order to isolate the effect of the value of each parameter, every

family in a sample has the same parameter value. However, to demonstrate the effectiveness of

choosing among all families of a given specificity requires that we also vary parameters

between families in a sample. In S5 Fig we show the effects of increasing the variance of param-

eters between families by first measuring performance on samples where every family has the

same parameter value (points left of dashed lines), and then on samples where the value for

each family is chosen at random (right of dashed lines in S5 Fig). The idea is to first give some

idea of the effect of changing only the mean value of the parameter (left of the dashed line),

and then of changing the variance (right of the dashed line). For the samples right of the

dashed line, the value for each family is drawn at random from the choices listed in Table 2

(which is summarized on the figure’s x axis as a range).

An unavoidable feature of our approach is that we must simulate a vastly larger number of

sequences than we want to sample. Since every cell in the evolutionary history of the family

must be simulated, and we want to decide which ancestral cells to sample at the end, large car-

rying capacities and observation times dramatically increase the required time and memory.

For example, each point in Fig 1 uses only 4.5 × 104 final sampled sequences, but requires actu-

ally simulating 3 × 108 sequences. And the biggest dtr training sample, with 2.5 × 106 final

sampled sequences, required simulating roughly 7 × 1010 sequences (Table 4).

PLOS COMPUTATIONAL BIOLOGY Using B cell receptor lineage structures to predict affinity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008391 November 11, 2020 15 / 30

https://doi.org/10.1371/journal.pcbi.1008391


When we simulate families with high SHM frequencies, for simplicity we treat them as a

single long-running GC reaction rather than multiple sequential reactions. Real antibodies

with 20-30% SHM are generally assumed to have undergone many cycles of GC completion

and reentry over a number of years (although antibodies with 20% SHM have been observed

after only 28 days [72]). Treating this instead as a single long-running GC reaction, however, is

probably a good approximation, because GC completion followed by reentry of memory B

cells is similar to a strong selective sweep [73]. This means that GC completion and reentry is

largely equivalent to increasing either the observation time or selection strength.

While it seems likely that most families in most real data correspond to regions of parame-

ter space far from any optimal antibody or target sequence, it is nonetheless important to

explore behavior as a family reaches the target sequence toward which it has been evolving.

For the initial target distances and carrying capacities used in our simulations, this corre-

sponds to observation times greater than several thousand generations (i.e. SHM around

20%). In order to maintain some diversity in these cases, we introduce a minimum target dis-

tance threshold (which we set to two amino acid changes) below which affinity does not

increase. Thus when sequences draw nearer to a target sequence than this threshold, they no

longer experience selective pressure to move closer to the target sequence.

Another limitation of our current approach is that while it can model a single family evolv-

ing toward multiple target sequences, it cannot model competition between families. Doing

this explicitly would be computationally prohibitive, since all the families in a repertoire would

need to interact with each other. However the important features could likely be mimicked by

allowing each family’s carrying capacity to vary with time, simulating the effects of other fami-

lies’ over- or under-utilization of available resources. The biggest problem stemming from this

current limitation is that each family operates under a fixed carrying capacity, so we cannot

evaluate the effectiveness of using clonal family size as a method of choosing high-affinity fam-

ilies. As a practical matter, however, this may not be a significant problem, since the extent to

which family size is an effective predictor depends entirely on how much competition between

families really occurs, which has not yet been definitively established. If different families are

in perfect competition (for instance if we believe that there are either many families within

each GC, or lots of transport between different GCs), then family size is by definition that fam-

ily’s fitness. On the other hand if there is little between-families competition, family size would

tell us little about fitness, being determined instead by random chance (e.g. by which family

happened to develop in the most well-resourced GC).

While we have great confidence that our simulation framework effectively recreates the

important features and variation of BCR evolution, we would prefer to also validate on a

completely independent package. Unfortunately, while there are many packages that come

close to simulating what we need [31, 74–76], to our knowledge they all lack necessary features.

Table 2. Parameter variance choices for samples used in points to right of dashed lines in S5 Fig. “Fig Row” refers

to the row in S5 Fig. The indicated parameter for each family is drawn at random from the listed values, and the “first”,

“second”, and “third” columns refer to the respective x values to the right of the dashed line in the Figure.

Fig Row parameter first second third

1 N sampled 25, 50, 75 15, 50, 150, 500

2 selection strength 0.5, 0.75, 1.0 0.25, 0.67, 1.0 0.1, 0.25, 0.75, 1.0

3 observation time 50, 100, 200 50, 150, 500, 1000

4 N sampled 50, 150, 300 25, 150, 500

4 selection strength 0.5, 0.75, 1.0 0.25, 0.75, 1.0

4 observation time 100, 250, 500 50, 250, 1000

https://doi.org/10.1371/journal.pcbi.1008391.t002
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Most frequently, they do not simulate complete nucleotide sequences, and instead draw a cell’s

affinity either directly from some distribution, or based on a few key residues.

Evaluation framework

While we described the basics of our performance evaluation above, there are many steps

between a simple metric vs affinity scatter plot and the “top quartile accuracy gap” values in

Fig 1. The question we’re trying to answer is, if we take the best few sequences according to

our metric, how high can we expect those sequences to rank in affinity? In a metric vs affinity

scatter plot (left side of Fig 3, or top row of Fig 4) this means taking the highest few points by y,

and seeing where they rank in affinity (x). We calculate these rankings as the quantile in affin-

ity, averaged over the chosen sequences. For instance the sequences in the top 4% of affinity

have quantiles from 96%-100%, and thus mean quantile 98%. The top 4% of sequences accord-

ing to some metric, on the other hand, might have affinity quantiles spread between 85%-

100%, which could give a mean of 92%. This example both neglects ties and assumes infinite

sample size; in practice both are important, which results in jumps and horizontal lines as in

Fig 3. This is one reason why it’s important to compare to the mean quantile of a hypothetical

perfect metric (green dashed lines), rather than to a constant value of 100. We plot this

Fig 4. Simulation performance of aa-cdist (left) and nuc-lbi (right) on a single, representative family. First

showing scatter plots of each metric vs affinity (top), and then the quantile performance plots (middle, see text and Fig

1 for explanation). The nuc-lbi scatter plot is colored by the distance to the “edge” of the tree, i.e. minimum

distance to either tip or root: nuc-lbi is less accurate (and biased low) for nodes near the edge of the tree (darker

color). At bottom, we show the correlation between aa-cdist and nuc-lbi, colored by affinity.

https://doi.org/10.1371/journal.pcbi.1008391.g004
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resulting mean affinity quantile for thresholds from the 50th to 100th quantile (i.e. choosing

from half to none of the sequences, right side of Fig 3, or middle row of Fig 4).

In order to compare performance over many different parameter choices, we need to sum-

marize this plot with one number. We do this by defining the deviation from perfect as the dif-

ference between the metric’s performance and that of a hypothetical perfect method (distance

between blue and green lines). We then average this quantity from the 75th to 100th quantiles

(i.e. choosing varying fractions of the top quartile). This average, reported as a mean ± stan-

dard error over many statistically independent samples, is what appears in Fig 1 as “top quar-

tile accuracy gap” or “accuracy gap”.

When predicting Δ-affinity, we cannot simply report the mean Δ-affinity quantile of the

chosen sequences because we want to account for being close to, but not exactly on, the correct

branch. We instead imagine moving upward on the tree from the node of interest until reach-

ing a branch containing an affinity-increasing mutation. We report the number of steps (i.e.

ancestors) that were necessary, so if we’re exactly right this number is 0. Searching only

upward reflects the fact that a mutation can only affect the fitness of nodes below it, and thus a

high nuc-lbr value at a node immediately above an important mutation is likely due to ran-

dom chance rather than a signal of selection. Nodes with high nuc-lbr that are several steps

below such a mutation, on the other hand, simply reflect the fact that increased fitness typically

takes several generations to manifest itself as an increase in observed offspring. In other words

searching downward would improve the apparent performance of a metric, but only by count-

ing as successes cases that were successfully predicted only through random chance. Another

reason we do not also search in the downward direction is that in a practical sense it is much

more useful to know that the important mutation is above a node than below it. We could

imagine in the lab testing one or a few branches above a node, but because of the bifurcating

nature of trees there would be far too many potential branches below (not to mention adding

the ambiguity of potentially going up and then down, i.e. how to count cousins). One potential

issue with this step-counting approach is that it gives equal credit for being off by long and

short branches. We thus also performed extensive validation using the total branch length tra-

versed, rather than number of steps (results not shown). The performance was generally simi-

lar, and is also probably less relevant since during inference we don’t control how long the

branches are. For instance any metric would appear to do worse on sparsely-sampled trees

with long branches.

Distance to family consensus sequence (aa-cdist and nuc-cdist)

One nice feature of consensus distance metrics is that, unlike nuc-lbi and nuc-lbr, there

is no inference inaccuracy: they are a direct result from observed sequences. However, these

observed sequences will in some cases not accurately represent the entire family. In order to

quantify this inaccuracy, we calculated the full-family consensus sequence, and then compared

it to consensus sequences calculated with smaller subsets of the family (S7 Fig). While the

nucleotide consensus can be quite inaccurate (top), we only calculate it in order to inform

comparison between aa-cdist and nuc-lbi. The amino acid consensus, on the other

hand, is quite accurate, reaching an error of one position (out of around 130) only for sampled

families smaller than 10 sequences and very early times (i.e. when almost no selection has yet

occurred, S7 Fig bottom left).

local branching index (nuc-lbi)

The authors of [5] introduce nuc-lbi as an approximate metric to supplement their more

complex likelihood-based measure. However, they find that the two perform very similarly, so
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the full likelihood calculation is probably more useful for building intuition (and motivating

nuc-lbi) than for practical use. The nuc-lbi score for each node in the tree is computed

as the total of all nearby branch lengths, weighted by an exponential function of the distance

away from that location with scale τ (S1 Fig).

τ optimization. The decay length τ determines the size of the local area that impacts each

node’s nuc-lbi. The authors of [5] suggest using 0.0625 times the average pairwise distance

between sequences (elsewhere they use the TC=
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p
and TC/15, for TC the coalescence

time, but since we’re not using coalescent models this is less useful here). While these estimates

are based on a thorough optimization, they result in a τ that depends on which sequences are

sampled, which precludes comparisons between families, as well as between samples in differ-

ent papers. Since these comparisons are important for us, we perform an optimization from a

somewhat different perspective, although we end up with a comparable value.

We begin by noting that the sequence length has a profound effect on the distances over

which trees branch, and for BCR sequences it is constant across families and samples. The

minimum possible branch length, corresponding to one point mutation, is equal to the inverse

sequence length 1/ℓseq. Thus from first principles/dimensional analysis we expected this to be a

reasonable guess for τ. However, we also want a value that gives optimal performance, so we

measured performance vs τ in a number of parameter scans similar to Fig 1. The strongest

dependence was vs number of sampled sequences as a fraction of carrying capacity (S9 Fig, top

row). While the most important message from this plot is probably that nuc-lbi perfor-

mance does not depend very strongly on τ, there is a pronounced peak in performance at 1/

ℓseq’ 1/400 = 0.0025, especially when choosing within families (top right), where nuc-lbi is

most important. We get a similar value if we (roughly) calculate the recommendation from [5]

for 10% SHM: 0.0625 × 0.10 = 0.00625. Thus we recommend using τ = 1/ℓseq for general use,

which for BCR sequences is about 0.0025.

We performed an independent τ optimization for aa-lbi and aa-lbr (results not

shown), which showed both that they are much less sensitive to τ than are their nucleotide ana-

logs, and that their optima are at comparable values to those of their nucleotide versions. We

thus use the same τ values for both amino acid and nucleotide versions.

As mentioned above, because sequence multiplicity is experimentally difficult to accurately

measure, we do not generally recommend its use, since any spurious multiplicities could easily

overwhelm the information from unique sequences, which is likely to be more accurate. How-

ever, in cases where they are reliable, multiplicities would be an extremely useful source of

additional information. If a cell has three sampled offspring, for instance, that is a strong indi-

cation of fitness regardless of whether the offspring all have identical BCR sequences. Our

implementation of nuc-lbi thus incorporates any multiplicity information that has been

passed in for each node (see https://git.io/JJCGe). It works by adding additional dummy

branches above any node that has multiplicity greater than 1. For instance a node with multi-

plicity 3 will have 3 branches connecting it to its parent, rather than 1. This represents the case

where the three observed sequences all “split off” at the top of the branch to its parent. In real-

ity a split point somewhere in the middle of the branch would likely be more accurate, but we

think that the current approach is a reasonable first approximation.

nuc-lbi normalization. In general, both the absolute magnitude of nuc-lbi and its

value relative to other sequences are meaningful. For influenza virus evolution, however,

which was the case of most interest to [5], only the relative value is useful, since there is only

one global influenza “clonal family”, and we know that at least some of these viruses will sur-

vive in the future (i.e. we definitely want to “choose” some of them). They thus normalize

nuc-lbi to the maximum value within the tree [70], discarding all information on its
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magnitude. Our case, however, is quite different: we are trying to determine how good an anti-

body is likely to be, so we care very much about the magnitude. Magnitude tells us whether

this is a really branchy bit of the tree, not just whether it’s branchier than the rest of the tree.

We go further than using the magnitude of nuc-lbi, however, and normalize this value

relative to two universal and intuitively meaningful minimum and maximum values. One rea-

son is that raw nuc-lbi can only be compared to other values that were calculated with the

same τ: a comparison to calculations that used a different τ, or simply don’t report τ, is

meaningless.

We thus look for some theoretically meaningful minimum and maximum values of nuc-
lbi, and set them to 0 and 1. Note that these don’t have to be the actual smallest and largest

possible values in order to be useful: for instance the Centigrade temperature scale definitions

of 0 and 100 are entirely analogous.

To find a maximum value, we construct a synthetic tree representing the “very branchy”

case, then search among its nodes for the maximum value. We generate such a tree by bifurcat-

ing after every point mutation (i.e. after a branch length of 1/ℓseq), then find the node in the

tree with maximum nuc-lbi. In order to avoid dependence on the depth of this tree, we

start with small N generations, and increase depth until (hopefully) reaching an asymptote. If

it diverges, i.e. does not reach an asymptote, the exercise is not meaningful (indeed when we

N-furcate for N> 2 it never converges, results not shown). Calculating this numerically, we

find that the maximum value converges to an asymptote for τ less than around 1/ℓseq, but

diverges for larger values (S10 Fig). Luckily τ optimization resulted in a comparable recom-

mendation. While this bifurcating tree is of course only one of many possible choices, its pur-

pose is to serve as some reasonable benchmark: when looking at a node with nuc-lbi of 1,

it’s very useful to know that its local area is roughly as branchy as a tree that bifurcates every

1/ℓseq.

Finding a minimum value is easier: we construct the (deep) caterpillar tree and find the

minimum nuc-lbi among its nodes. This minimum is simply τ, a result which can also be

obtained by performing a trivial analytic integration. We thus normalize nuc-lbi such that

this minimum value is 0, and the maximum value (previous paragraph) is 1. Note that leaves

in shallow trees can thus have values less than 0, and dense trees can result in values greater

than 1.

Dummy branches. An inherent bias in the nuc-lbi calculation is that nodes near the

edge of the tree (i.e. near root or leaves) are systematically biased low. While there is no way to

address the underlying reason for this—by definition we don’t know what happens before root

or after leaves—we can test some corrections. Calculating nuc-lbi on a (normal) tree that

ends abruptly at leaves and root amounts to using the implausible prior that root sprang forth

from nothing, and that every leaf died immediately upon sampling (or rather, would have died

even without being sampled). We can instead use the much more plausible prior that the status

quo at these times continued to ±infinite time by adding long “dummy” branches above root

and below each leaf. Unfortunately this does not turn out to improve performance (results not

shown). We suspect that this is because we actually know another key piece of information

that is not encoded in nuc-lbi: most novel mutations are deleterious. In other words the

fact that nuc-lbi is biased low for leaves is compensated for by the fact that for external rea-

sons we know that leaves are typically low fitness.

Relative fitness. We also note that, by design, nuc-lbi measures a cell’s fitness relative

to cells alive at the same time (i.e. cells against which it was actually competing). Thus in any

situations that involve sampling sequences from many different time points (e.g. sampling lots

of ancestral sequences) performance suffers in an absolute sense. This can be ameliorated in
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practice simply by paying attention to the location of nodes within a tree, and keeping in mind

that affinity likely increases for much of the length of the tree.

AA local branching index (aa-lbi)

The basic goal of this metric is to recreate the local branching calculation on a tree that reflects

only nonsynonymous changes, thus ignoring the significant noise introduced in nucleotide

nuc-lbi by synonymous mutations. To make this “amino acid tree”, we begin with the

nucleotide tree, and set the length of each edge to the fractional amino acid hamming distance

between the sequences of its two nodes. Unlike nucleotide nuc-lbi, this procedure requires

an inferred ancestral sequence for each internal node, so it cannot be run on trees produced by

faster methods such as FastTree that are suitable for use on full repertoires, and instead

requires methods such as RAxML (see “Tree inference methods” below). Another possibility

would be to infer the tree directly on the amino acid sequences; while this would result in a less

accurate topology, it might be accurate enough for the aa-lbi calculation.

local branching ratio (nuc-lbr)

We calculate nuc-lbr with the same integrals as nuc-lbi, so much of that discussion

applies here as well. The difference is that instead of adding up the branch lengths in all direc-

tions, we instead divide those below the node by those above and beside it (S1 Fig). This results

in a very sharp distinction between the effects of mutations above the parent vs those below.

As for nuc-lbi, we performed an optimization of the decay length τ, but with quite differ-

ent results (S9 Fig). First, the variation in performance is much more significant. Second, there

is no peak in performance: instead it improves monotonically as τ increases to very large val-

ues. This makes sense since larger τ means that more of the tree is visible, which adds informa-

tion. For nuc-lbi, however, there is a countervailing effect: resolution as to which node

we’re focusing on is also determined by τ, which disfavors large τ. But the resolution of nuc-
lbr is determined by the sharp distinction between numerator and denominator, so τ can

increase without penalty. Another way of explaining why nuc-lbr improves with larger τ is

that if a fitness-increasing mutation has just occurred, the chances of having many offspring in

the first generation is likely not very close to 1 even if it is strongly advantageous (for example,

let’s say it’s 1/3). But as we proceed down the tree, the chance of any of the next few genera-

tions having many offspring is much closer to one, for instance after five generations it would

be 1 − (1/3)5 = 0.99. We thus (somewhat arbitrarily) choose to use τ of 20 × 1/ℓseq for nuc-
lbr.

While the same normalization procedure could be followed as for nuc-lbi, there is no

point, because nuc-lbr is an inherently unitless ratio.

In the case of nuc-lbi above, we concluded that adding “dummy” branches to correct for

biases did not make sense. For nuc-lbr, however, we have an additional consideration:

nuc-lbr begins to diverge for nodes near the root, since there is no branch length above the

root (in the denominator). Because this is highly undesirable, we add a very long dummy

branch above the root node during nuc-lbr calculation.

Tree inference methods

When evaluating the simulation performance of metrics that depend on trees (nuc-lbi,

nuc-lbr, aa-lbi, aa-lbr, and Δ-nuc-lbi), we use only the true simulated tree. This is

because we want to separate the ability of the metrics to predict affinity or Δ-affinity from the

performance of a particular phylogenetic inference method. We then separately evaluate the

robustness of the nuc-lbi and nuc-lbr calculations to use of the fast but relatively
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inaccurate tree inference that partis uses by default (S8 Fig). We find in this test that tree

inference matters very little for nuc-lbi, but is important for nuc-lbr. This makes sense,

since nuc-lbi depends on shorter range comparisons between similar sequences that are

likely easier to capture with a heuristic tree method, while nuc-lbr is sensitive to the longer

range details of ancestral inference. It would be useful to also make this comparison for other

phylogenetic inference programs and over the huge variety of tree characteristics encoded by

our simulation parameters. As these programs get more accurate, however, they also get much

slower, so this will require a substantial time investment.

The cases we can envision where better phylogenetic inference is important will usually

involve only a few families, and trees can thus be inferred separately using programs such as

linearham [39] or RAxML [40]. These trees would then be passed to partis for selection

metric calculation using the --treefname option of the get-selection-metrics
action (see https://git.io/JfeGk). Most commonly this would be necessary after an antibody of

interest has already been chosen. In such a case we would want to infer ancestral sequences in

that antibody’s family (which partis cannot currently do), and then include these ancestors

in the selection metric calculation. Such a workflow was followed in [41] (albeit without the

selection metric calculation). This used the linearham package for accurate Bayesian infer-

ence of both trees and naive sequences (see https://github.com/matsengrp/linearham), and the

Olmsted package for visualization (see https://github.com/matsengrp/olmsted), which are

both highly recommended.

The fast but heuristic tree inference method that is currently included in partis com-

bines the history of its clustering algorithm with the FastTree inference program. Because this

clustering proceeds via hierarchical agglomeration [1], the history of the clustering process

itself constitutes a tree. While this tree is based only on sequence similarity measures (either

inferred naive hamming distance or the partis VDJ rearrangement likelihood) rather than

a model of sequence evolution, in many cases the result will be quite similar. The biggest inac-

curacy in using this approach for tree inference is that the agglomeration frequently merges

many clusters together in a single step, resulting in a large multifurcation in the tree. Typically

the largest of these happens in the initial clustering step, when it merges together input

sequences with very similar inferred naive sequences (for details and thresholds see [1]). We

thus refine the clustering-based tree by removing any subtree whose root has more than two

offspring, and replace it with a subtree inferred by FastTree [77]. Because FastTree forces any

observed ancestral sequences to be very short leaves hanging off of the corresponding internal

node, we then also collapse any such leaf with length less than 0.5 × 1/ℓseq. Note that this

method does not allow for ancestral sequence inference, which for detailed studies of single

families will be quite important.

The speed of this calculation is entirely dependent on how much of the tree needs to be

inferred via FastTree, since the non-FastTree parts come along for free from the already-com-

pleted clustering. But on typical BCR NGS samples, the only appreciable time is taken for the

largest few families, and a family of for instance several thousand sequences can be expected to

take a few minutes.

Decision tree regression (dtr)

The fact that we have several very different metrics that perform adequately suggests that we

combine them using some form of machine learning. We focused on decision tree regressors,

and found that gradient boosting generally performed better than other methods. We tried

many combinations of input variables, but found no benefit to reducing their number from

the full set, which is shown in Table 3. We trained different dtr versions both for choosing
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among all families and for choosing within each family, as well as for predicting both affinity

and Δ-affinity.

Because we need the dtr to perform well for all possible combinations of parameters, we

must construct a training sample consisting of families exhibiting a huge variety of characteris-

tics, which requires an extremely large number of families. The types of samples used for the

parameter scans, such as Fig 1, are useless for this, since they hold all but one or two parame-

ters constant. We thus made several highly variable samples (Table 4), each generated by first

choosing a distribution for each parameter. To simulate a family, a value for each parameter is

then drawn from that parameter’s distribution. We generated between two and five indepen-

dent samples for each set of parameter distributions, i.e. the dtr was trained on one sample of

the indicated size, while there was at least one other sample for testing that had identical

underlying parameters, but was generated with a different random seed. We also tested on all

other combinations of parameter distributions, as well as the slice/scan samples from e.g. Fig

1. Finally, we also tested a comprehensive variety of the parameters describing dtr training

(e.g. number of estimators, decision tree depth, and pruning details). Note that we test on

training samples only in order to evaluate statistical overtraining, i.e. to ensure that perfor-

mance is comparable on samples that differ from the training sample only by random seed; we

never report or talk about the “performance” on a training sample.

Here we summarize our conclusions; full results can be found at https://zenodo.org/record/

3929565. We managed to create a dtr that in most regions of parameter space roughly

Table 3. Decision tree regression (dtr) input variables. The among-families dtr uses both per-sequence (top) and

per-family (bottom) metrics; while the within-family dtr uses only the former. aa-lbi and aa-lbr were not

included only because they were developed after completion of the dtr study.

per-sequence metrics description

aa-cdist see Table 1

nuc-cdist see Table 1

nuc-lbi see Table 1

nuc-lbr see Table 1

n-shm see Table 1

n-shm-aa amino acid distance to family naive sequence

edge dist. min. distance in tree to either root or tip

per-family metrics description

Fay/Wu H measures selection via excess in site frequency spectrum [68]

nuc cons seq SHM nucleotide distance from family consensus sequence to naive sequence

aa cons seq SHM amino acid distance from family consensus sequence to naive sequence

mean n-shm mean number of nucleotide mutations among sequences in the family

max lbi maximum nuc-lbi value in the family

max lbr maximum nuc-lbr value in the family

https://doi.org/10.1371/journal.pcbi.1008391.t003

Table 4. Parameters used for dtr training samples. Versions v0-v2 sampled parameters for each family from uniform distributions of the indicated mean and half-

width, while v3 sampled with equal probability from the indicated discrete values.

label N families per sample N samples carry cap. obs times N sampled selection strength

v0 1000 5 1500 ± 1000 150 ± 75 150 ± 100 0.75 ± 0.25

v1 50000 5 1500 ± 1000 150 ± 75 30 ± 7.5 0.75 ± 0.25

v2 300000 2 1500 ± 1000 150 ± 75 20 ± 7.5 0.75 ± 0.25

v3 50000 2 250,500,900,1000,1100,1500,5000 75,100,150,200,1000 15,30,75,150,500 0.5,0.9,0.95,1.0

https://doi.org/10.1371/journal.pcbi.1008391.t004
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recapitulates the performance of the best single metric (usually aa-cdist or aa-lbi), but

improves upon it only slightly (perhaps a few percent). Because of the significant complication

introduced by the use of any machine learning method, and their lack of interpretability, we

think they are only worthwhile in cases where they improve performance by much more than

this. This is of course influenced by the fact that we have one metric (aa-cdist) performing

well everywhere; if different regions of parameter space required different single metrics, the

dtr would be much more attractive.

It is difficult, if not impossible, to definitively attribute the dtr’s failure to improve perfor-

mance as much as we expected, since we cannot directly measure whether these expectations

were reasonable. However, we think it is highly likely that there is significant additional infor-

mation in the more poorly-performing variables, and we are also quite confident that a num-

ber of features of our use case make it particularly challenging for a machine learning

approach. The metrics nuc-lbi and aa-cdist are far from perfectly correlated (Fig 4, at

bottom), and while this discordance is of course not entirely due to useful independent infor-

mation, nuc-lbi clearly contains tree and locality information that is not included in aa-
cdist. One challenging feature of our case is that the inferred tree quantities that serve as

input variables (e.g. n-shm, Fay/Wu H) are very noisy predictors of the true tree parameters

are (e.g. observation time, selection strength, carrying capacity). To take one example, the rela-

tive performance of nuc-lbi and n-shm completely reverses between low and high selec-

tion strength (blue and orange in bottom right of S2 Fig), but Fay/Wu H is far too poor an

estimator of selection strength to give the dtr an accurate idea where along the x axis it is for

a given family (results not shown). It is likely that more sophisticated tree inference would

improve performance by allowing the use of more fundamental tree variables as input. It is

also of course entirely possible that a different machine learning approach would be able to

improve on our efforts; however given the exemplary performance of aa-cdist alone, we

do not feel that this is a high priority.

Supporting information

S1 Fig. Cartoon showing calculation of nuc-lbi (left) and nuc-lbr (right). The dark-

ness of each branch represents the exponentially decaying weight factor, which decreases with

distance from the node (in red) for which we’re calculating the metric. On the left, we show

a node with low nuc-lbi (top) and high nuc-lbi (bottom). At right, in calculating

nuc-lbr for the red node, we split the tree into two pieces: offspring of the node in the

numerator; and parents, siblings, cousins, and their offspring in the denominator.

(TIFF)

S2 Fig. Simulation performance for affinity prediction within families, similar to Fig 1 but

for scans across a variety of different parameters. Performance is shown vs observation

times (units of N generations), where sampling occurred at five different time points spanning

the indicated values for carrying capacity of both 350 (top left) and 2000 (top right). This is in

contrast to Fig 1, where sequences were sampled only at the same, final time point. Perfor-

mance is also shown vs carrying capacity with 30 (middle left) and 150 (middle right) sampled

sequences per family; vs observation time for a non-default affinity calculation utilizing BLO-

SUM matrices (bottom left); and vs a parameter describing the strength of selection (bottom

right). The corresponding among-family plots, as well as plots for many other parameter com-

binations, are in https://zenodo.org/record/3929565.
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S3 Fig. Simulation performance for within-family affinity prediction with different sam-

pling schemes vs N sampled sequences per family for aa-cdist (left) and nuc-lbi
(right). Schemes shown are “uniform random” (the default, which is shown in all other plots),

“affinity biased” (the probability of sampling each cell is proportional to its affinity), and “per-

fect affinity” (sample the N cells with highest affinity). Corresponding among-families plots,

and plots for all other metrics, are at https://zenodo.org/record/3929565.

(TIFF)

S4 Fig. Simulation performance for within-family affinity prediction with different num-

bers of “target sequences” vs observation time for aa-cdist (left) and nuc-lbi (right).

The target sequence represents a hypothetical optimal antibody toward which selection is

directing the cells (see text). Shown for 1, 2, and 4 independently-chosen target sequences

(top); as well as for 4, 8, and 16 target sequences divided among the indicated number of “clus-

ters” of target sequences (bottom). Corresponding among-families plots, and plots for all other

metrics, are at https://zenodo.org/record/3929565.

(TIFF)

S5 Fig. Simulation performance for affinity prediction when parameters vary between the

families in a sample, shown both for choosing within each family (left) and among all fam-

ilies (right). Within each plot, families in samples used to calculate points with x values to the

left of the dashed line all have the same parameters, whereas those to the right have values sam-

pled from the indicated range. For instance when varying N sampled sequences (top row), 15

sequences were sampled from every family in the leftmost points; whereas in making the right-

most points the number of sequences sampled from each family varied between 15 and 500. In

the top three rows, we vary only one parameter at a time between families (N sampled, obser-

vation time, and selection strength), while in the bottom row we vary all three at once.

(TIFF)

S6 Fig. Performance on real data for nuc-lbi from [32] (top) and [33] (bottom). See cap-

tion to Fig 3.

(TIFF)

S7 Fig. Accuracy of the consensus calculation as a function of number of sampled

sequences for nucleotide (top) and amino acid (bottom) consensus sequences. This shows

the two extremes of parameters that seem to affect accuracy the most: very early times and

small carrying capacities (left) vs very late times and large carrying capacities (right). Each

point is the mean (± standard error) of 50 families, each with’150 sequences. The y value is

the hamming distance (i.e. inaccuracy) between the consensus sequence calculated with the

indicated number of sampled sequences (x axis) and the consensus sequence calculated on the

entire family.

(TIFF)

S8 Fig. Comparison of nuc-lbi (left) and nuc-lbr (right) calculated on true trees (x

axis) vs inferred trees (y axis), as scatter plots with Pearson’s linear correlation coefficient.

Inferred trees are made with the approximate, but very fast, method run by default partis
(see Methods). The lefthand plot suggests that nuc-lbi is largely insensitive even to very

heuristic tree inference. In the righthand plot, on the other hand, the handful of points with

highly discrepant true and inferred values indicate that for nuc-lbr it is worth using a more

sophisticated phylogenetic inference program if at all possible.

(TIFF)
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S9 Fig. Effect of exponential decay length τ variation on performance when sampling dif-

ferent fractions of the carrying capacity (colors) for nuc-lbi (top) and nuc-lbr (bot-

tom) when choosing among all families (left) and within each family (right). Dashed red

line corresponds to the value expected from dimensional analysis 1/ℓseq = 1/400. The fraction

observed corresponds to sampling between 30 and 200 sequences from a carrying capacity of

1000. Note that the vertical ordering of lines (i.e. whether performance is better for higher or

lower sampling fractions) is not really informative in this plot—the order reverses depending

on whether we sample ancestors or not, i.e. to a large extent it just measures the fraction of

sampled sequences that are leaves.

(TIFF)

S10 Fig. Finding a maximum nuc-lbi value to use for normalization at different τ values

(colors) with both linear (left) and log (right) scales. Plots show the maximum nuc-lbi
value among the nodes in a particular reference synthetic “super branchy” tree as a function of

tree depth (N generations). The asymptotic value for 1/ℓseq = 1/400 is shown in dashed red; the

maximum nuc-lbi value converges to an asymptote for τ less than this, while for τ greater

than this the maximum diverges.

(TIFF)
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